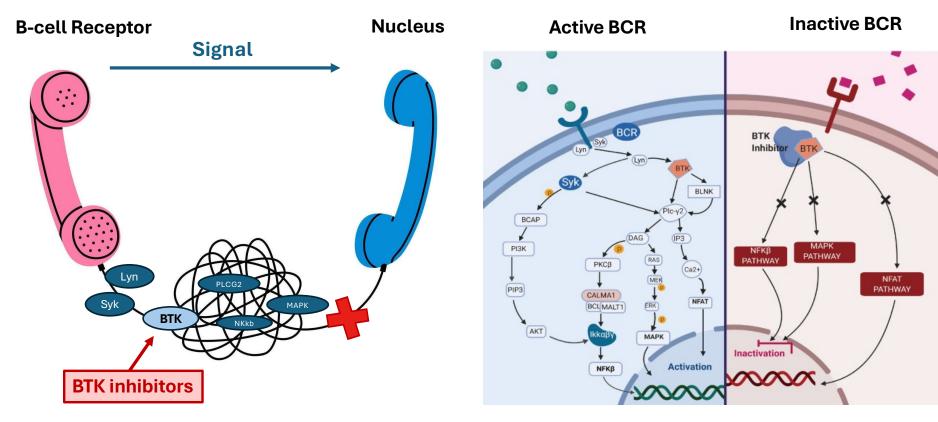
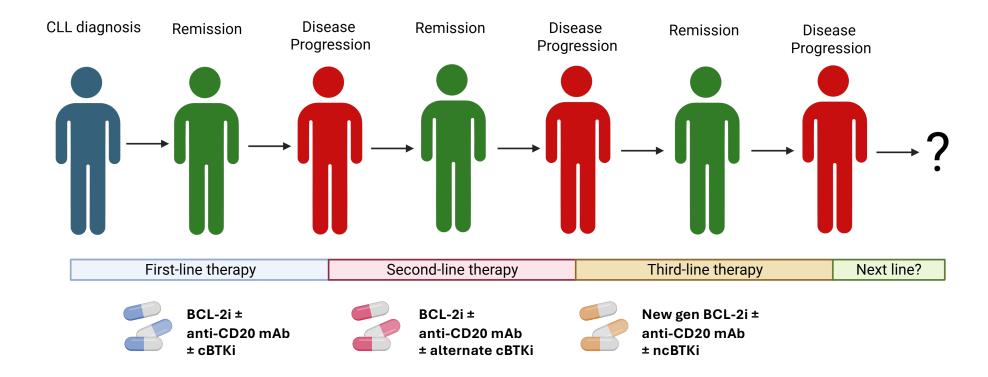


Mutations and Treatment Resistance: Finding Better Answers for CLL Patients

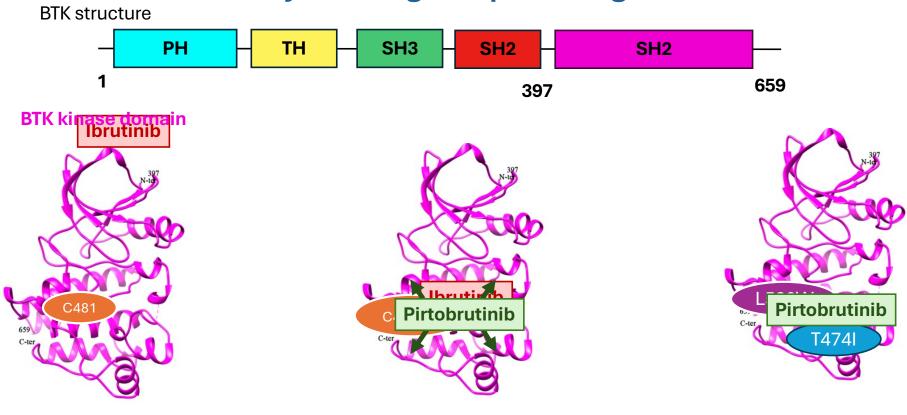
Natalia Timofeeva, M.D.


Postdoctoral Fellow Dr. Gandhi's lab Translational Molecular Pathology Department

Making Cancer History®


How Targeted Treatments Work?

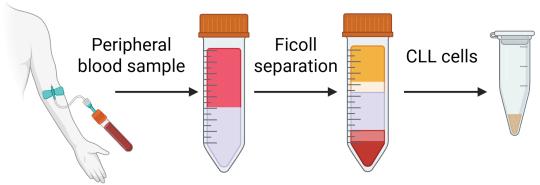
B-cell Receptor (BCR)

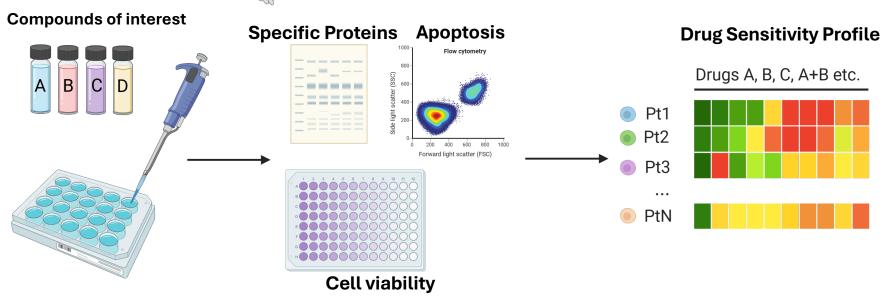

cBTKi/ncBTKi – covalent/non-covalent BTK inhibitors BCL-2i – BCL-2 inhibitors mAb – monoclonal antibodies

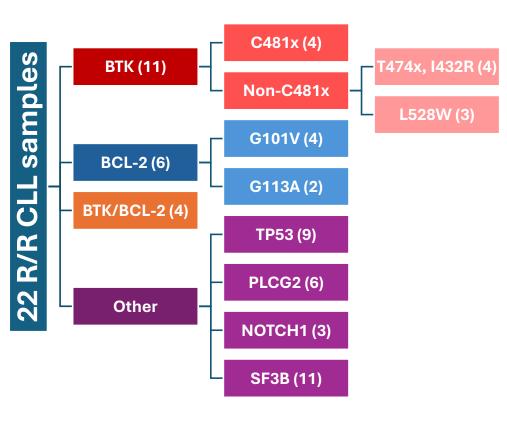
The CLL Therapy Journey: Remission and Relapse Cycle

cBTKi/ncBTKi – covalent/non-covalent BTK inhibitors BCL-2i – BCL-2 inhibitors mAb – monoclonal antibodies

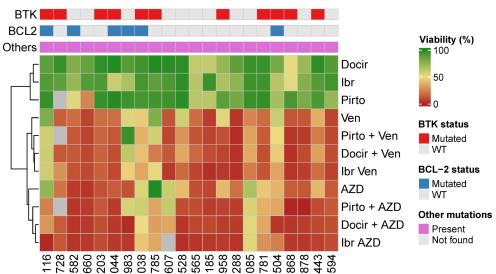
Why the Drugs Stop Working?


Targeted drugs development


Resistance mechanisms


What is "Ex Vivo" drug profiling?

Ex vivo – "outside the living"

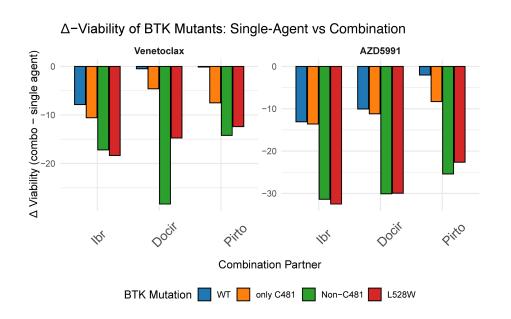

Ex vivo drug profiling of samples from relapsed CLL patients

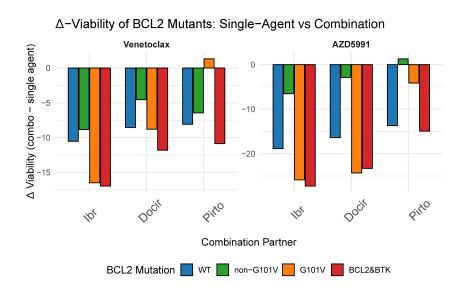
Drugs:

- BTKi (covalent: *ibrutinib*; non-covalent: *pirtobrutinib*, *docirbrutinib*)
- BCL-2 inhibitor (venetoclax)
- MCL-1 inhibitor (AZD5991)

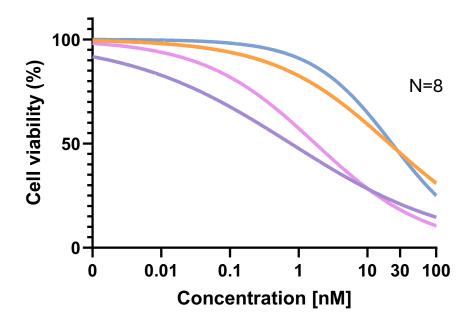
Ex vivo treatment for 72 hrs → Cell death assessment

Why One Treatment Doesn't Fit All

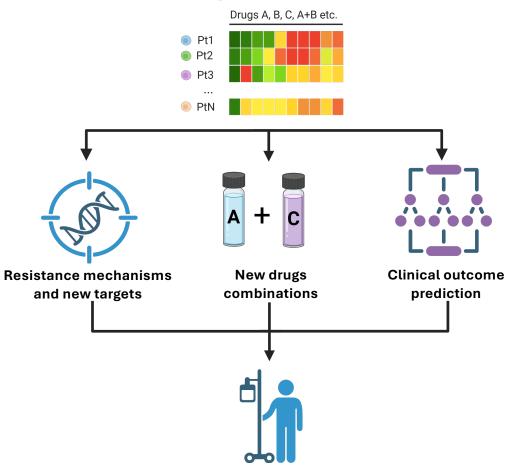

Mean Viability (±SEM) by Mutation Group and Treatment


all patients (n=22)	82.1 (±13.9)	86.5 (±14.2)	83.4 (±19.1)	29.5 (±24.5)	18 (±17)	21.3 (±18)	23.7 (±24.4)	31.5 (±26.8)	12.5 (±15.1)	14.9 (±16.1)	21.1 (±21.5)	
BTK WT (n=11)	84 (±3.7)	83.9 (±4.1)	75.3 (±6.8)	19.7 (±5.8)	11.9 (±3.8)	19.2 (±5.4)	19.6 (±8.2)	22.4 (±6.9)	9.3 (±5)	12.3 (±4.9)	20.3 (±7.4)	
BTK mutated (n=11)	80.2 (±4.7)	89.2 (±4.5)	92.2 (±2.7)	39.3 (±7.8)	24.2 (±5.7)	23.3 (±5.6)	28.1 (±6.7)	40.7 (±8.5)	15.5 (±4.3)	17.6 (±4.9)	21.9 (±5.9)	
only C481 (n=4)	83.8 (±8)	97.9 (±1.4)	95.6 (±1.6)	29.3 (±6.8)	18.7 (±5.6)	24.7 (±7.5)	21.8 (±5.8)	29.2 (±10.7)	15.7 (±9.3)	18 (±10.8)	21 (±12.6)	
non-C481 (n=4)	84.7 (±12.1)	92 (±12)	93.6 (±4.2)	41.1 (±31.3)	19.9 (±13.8)	21.2 (±14.4)	25.9 (±17)	51.3 (±35.3)	23.9 (±21.2)	12.8 (±6.4)	26.9 (±26.9)	
L528W (n=3)	69.4 (±17.3)	73.8 (±17.5)	86.3 (±13.1)	50.3 (±31.6)	9.5 (±10.7)	12 (±13.3)	19.3 (±15.4)	42 (±27.6)	31.9 (±24.9)	35.5 (±26.5)	37.9 (±26.6)	
BCL2 WT (n=16)	84.8 (±3.3)	85.6 (±4)	82.8 (±5.1)	23.4 (±5.5)	12.8 (±3.2)	14.8 (±2.7)	15.3 (±3.8)	31.1 (±6.8)	12.3 (±3.9)	14.7 (±3.8)	17.4 (±5.2)	-
BCL2 G101V (n=4)	70.8 (±6.7)	90.2 (±4)	90.2 (±7)	53.1 (±12.9)	36.6 (±10.8)	44.3 (±12.1)	54.5 (±17.4)	34 (±14.9)	8.2 (±5)	9.7 (±6.5)	29.9 (±10.9)	
BCL2 non-G101 (n=2)	83.6 (±10.2)	86.8 (±7.7)	73.7 (±19.9)	31.4 (±13.8)	22.5 (±11.8)	26.8 (±14.7)	24.9 (±13)	29.9 (±25)	23.3 (±20)	27 (±23.4)	31.1 (±27.4)	-
BTK&BCL2 (n=4)	77.3 (±8.6)	91.3 (±4.1)	89.8 (±6.9)	50.7 (±13)	33.8 (±10.4)	38.9 (±10.4)	39.9 (±10.3)	45.2 (±13)	17.9 (±9.8)	21.9 (±11.2)	30.2 (±11.2)	
TP53 (n=9)	79.5 (±4.9)	80.4 (±5.5)	79.2 (±8.6)	30.6 (±8.3)	18.6 (±6.3)	20.9 (±6.4)	19.3 (±6.9)	29.5 (±8)	9.3 (±4.4)	14 (±5.3)	13.8 (±6.9)	
NOTCH1 (n=3)	74.1 (±8)	80.9 (±3.6)	61 (±19.1)	40.2 (±16.9)	15.2 (±9.1)	20 (±12.5)	22.5 (±14.2)	27.2 (±11.8)	10.7 (±6.2)	4.2 (±0.5)	15.1 (±9.6)	
PLCG2 (n=6)	82.1 (±5.5)	89.8 (±4)	79.5 (±11.4)	18.2 (±6.2)	13.4 (±5)	17.6 (±6.7)	16 (±6.3)	28.2 (±10.8)	18.9 (±9.6)	20.4 (±10)	21.6 (±11.4)	
SF3B1 (n=11)	81.7 (±4.6)	80.7 (±5.2)	86.7 (±3.8)	28.6 (±7.8)	13.9 (±5.3)	19 (±5.5)	16.9 (±5.4)	30.8 (±7.2)	8 (±4)	14.6 (±4.8)	17.3 (±6.7)	
	1/pt	Oocil	Pitto	New	ht. Nev.	ocit*Ven	zito* Ven	RID.	Ibr* AZD	Joci ^x AID	iko* AZD	

wean viability (%


Combination Of Drugs With Different Mechanism Of Actions Helps To Increase Efficacy

Combining drugs can be powerful when chosen correctly


Newer BCL-2 inhibitors are more potent than firstgeneration venetoclax in relapsed CLL samples

- → Venetoclax ($IC_{50} = 9.9 \text{ nM}$) → ABBV-453 ($IC_{50} = 0.4 \text{ nM}$)
- Sonrotoclax ($IC_{50} = 0.08 \text{ nM}$) \leftarrow Lisaftoclax ($IC_{50} = 4.9 \text{ nM}$)

How ex vivo drug profiling can help CLL patients?

Drug Sensitivity Profile

Personalized treatment strategy

Conclusions & Acknowledgements

- •CLL cells from different patients show very different sensitivities to the same drugs.
- •Genetic mutations (like those in **BTK** or **BCL-2**) influence how well treatments work.
- •Some resistant samples still respond to new or combination therapies.
- •Studying these differences ex vivo helps predict which treatments are most effective for each patient.
- •Understanding resistance patterns guides the design of smarter, more durable therapies.

Translational Molecular Pathology Department

Dr. Varsha Gandhi's lab Varsha Gandhi, Ph.D., Pl LaKesla R. Iles Evan Cohen, Ph.D. Breana Herrera Kyle Smith Leukemia Department

William Wierda, M.D., Ph.D. Jain Nitin, M.D. Stephanie Zelaya

CLL-GRF Foundation

DPLM Research Grant